MA 114 Worksheet \#01: Integration by parts

1. Which of the following integrals should be solved using substitution and which should be solved using integration by parts?
(a) $\int x \cos \left(x^{2}\right) d x$,
(c) $\int \frac{\ln (\arctan (x))}{1+x^{2}} d x$,
(b) $\int e^{x} \sin (x) d x$,
(d) $\int x e^{x^{2}} d x$
2. Solve the following integrals using integration by parts:
(a) $\int x^{2} \sin (x) d x$,
(f) $\int x^{5} \ln (x) d x$
(b) $\int(2 x+1) e^{x} d x$,
(g) $\int e^{x} \cos x d x$
(c) $\int x \sin (3-x) d x$,
(h) $\int x \ln (1+x) d x \quad$ Hint: Make a
(d) $\int 2 x \arctan (x) d x$, substitution first, then try integration by parts.
(e) $\int \ln (x) d x$
3. Let $f(x)$ be a twice differentiable function with $f(1)=2, f(4)=7, f^{\prime}(1)=5$ and $f^{\prime}(4)=3$. Evaluate $\int_{1}^{4} x f^{\prime \prime}(x) d x$
4. If $f(0)=g(0)=0$ and $f^{\prime \prime}$ and $g^{\prime \prime}$ are continuous, show that

$$
\int_{0}^{a} f(x) g^{\prime \prime}(x) d x=f(a) g^{\prime}(a)-f^{\prime}(a) g(a)+\int_{0}^{a} f^{\prime \prime}(x) g(x) d x
$$

MA 114 MathExcel-Worksheet \# 1: Integration by Parts and Trig Derivatives

1. Evaluate the following integrals.
(a) $\int \frac{1}{9+x^{2}} d x$
(b) $\int \frac{1}{\sqrt{1-4 x^{2}}} d x$
(c) $\int x \sqrt{2 x+1} d x$
2. Evaluate the following integrals by making a substitution and then using integration by parts.
(a) $\int \cos \sqrt{x} d x$
(b) $\int t^{3} e^{-t^{2}} d t$
(c) $\int_{0}^{\pi} e^{\cos (t)} \sin (2 t) d t$
